Printed Pages - 5

Roll No.:

322451(14)

B. E. (Fourth Semester) Examination Nov.-Dec. 2021

(New Scheme)

(CSE Branch)

COMPUTATIONAL MATHEMATICS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts from (b), (c) and (d) of each question. The figures in the right-hand margin indicate marks.

Unit - I

- 1. (a) State and explain Newton-Raphson Method.
 - (b) Find a real root of the equation $x \log_{10} x = 1.2$ by regula-falsi method correct to four decimal place.

7

- (c) Find by Newton's Method, the real root of the equation $3x = \cos x + 1$ correct to four decimal place.
- (d) Find the roots of the equation $x^3 + 2x^2 + 10x 20 = 0$

that is near 1, using Birge-Vita Method correct to 4 decimal place.

Unit - II

- 2. (a) State and explain Gauss elimination method. 2
 - (b) Solve the Jacobi's iteration method, the equation 20x + y 2z = 173x + 20y z = -18

$$2x + 3y + 20z = 25$$

(c) Apply Gauss-Jordan method to solve the equation x + y + z = 9

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

(d) Solve by triangularization method, the following system.

[3]

$$x + 5y + z = 14$$

 $2x + y + 3z = 13$

$$3x + y + 4z = 17$$
7

Unit - III

- 3. (a) State and explain Forward and Backward difference.
 - (b) Find y (8) from the following table:

 x: 0 5 10 15 20 25

 y: 7 11 14 18 24 32
 - (c) Given the value: x : 5 7 11 13 17
 - f(x): 150 392 1452 2366 5202 evaluate f(9) using Lagrange's formula.
 - (d) Using Newton's divide difference formula, evaluate f(8) and f(15) given x4

 5

 7

 10

 11

 13

2

- 4. (a) State and explain trapozoidal rule for integration. 2
 - (b) Find the first and second derivative of f(x) at x = 1.5 if 7 x = 1.5 2.0 2.5 3.0 3.5 4.0 f(x) 3.375 7.000 13.625 24.00 38.875 59.000
 - (c) The velocity v (km/mm) of a moped which starts from rest, is given at fixed intervals of time t (mm) as follows:

t : 2 4 6 8 10 12 14 16 18 20 v : 10 18 25 29 32 20 11 5 2 0

Estimate approximately the distance covered in 20 minutes.

- (d) Evaluate $\int_{-3}^{3} x^4 dx$ by using
 - (i) Trapezoidal Rule
 - (ii) Simpson's Rule with and seed the verify your results by actual integration.

Unit - V

322451(14)

5. (a) State and explain Picard's method.

2

100]

7

[5]

(b) Using modified Euler's method, find an approximate value of y when x = 0.3 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.

7

- (c) Find the Taylor's series method, the value of y at x = 0.1 and x = 0.2 to five place of decimals from $\frac{dy}{dx} = x^2y 1, \quad y(0) = 1.$
- (d) Using Runge-Kutta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2, 0.4. 7$